題 目:Isoparametric Submanifolds and Mean Curvature Flow
內(nèi)容簡(jiǎn)介:Ancient solutions are important in studying singularities of mean curvature flows (MCF). So far most rigidity results about ancient solutions are modeled on shrinking spheres or spherical caps. In this talk, I will describe the behavior of MCF for a class of submanifolds, called isoparametricsubmanifolds, which have more complicated topological type. We can show that all such solutions are in fact ancient solutions, i.e. they exist for all time which goes to negative infinity. Similar results also hold for MCF of regular leaves of polar foliations in simply connected symmetric spaces with non-negative curvature. I will also describe our conjectures proposed together with Terng on rigidity of ancient solutions to MCF for hypersurfaces in spheres. These conjectures are closely related to Chern’s conjecture for minimal hypersurfaces in spheres. This talk is based on joint works with Chuu-LianTerng and Marco Radeschi.
報(bào)告人:北京大學(xué) 劉小博 教授
報(bào)告人簡(jiǎn)介:本科畢業(yè)于清華大學(xué),博士畢業(yè)于美國(guó)賓夕法尼亞大學(xué),曾任美國(guó)圣母大學(xué)教授,現(xiàn)為北京大學(xué)講席教授。他曾在《Annals of Math.》、《Journal of Differential Geometry》、《Duke Math. Journal》等國(guó)際一流期刊上發(fā)表多篇論文。由于在幾何與數(shù)學(xué)物理領(lǐng)域杰出的學(xué)術(shù)成就,他曾獲得美國(guó) Sloan 研究獎(jiǎng),并應(yīng)邀在 2006 年的國(guó)際數(shù)學(xué)家大會(huì)上做 45 分鐘報(bào)告。目前,他正擔(dān)任北京國(guó)際數(shù)學(xué)中心的副主任。
時(shí) 間:2021年6月11日(周五)上午10:30開(kāi)始
地 點(diǎn):騰訊在線會(huì)議ID:908 965 709
點(diǎn)擊鏈接入會(huì),或添加至?xí)h列表:
https://meeting.tencent.com/s/0jMv3gUbdev6
熱烈歡迎廣大師生參加!
信息科學(xué)技術(shù)學(xué)院